Metal–Arene Complexes with Indolo[3,2-c]-quinolines: Effects of Ruthenium vs Osmium and Modifications of the Lactam Unit on Intermolecular Interactions, Anticancer Activity, Cell Cycle, and Cellular Accumulation

نویسندگان

  • Lukas K. Filak
  • Simone Göschl
  • Petra Heffeter
  • Katia Ghannadzadeh Samper
  • Alexander E. Egger
  • Michael A. Jakupec
  • Bernhard K. Keppler
  • Walter Berger
  • Vladimir B. Arion
چکیده

Six novel ruthenium(II)- and osmium(II)-arene complexes with three modified indolo[3,2-c]quinolines have been synthesized in situ starting from 2-aminoindoloquinolines and 2-pyridinecarboxaldehyde in the presence of [M(p-cymene)Cl(2)](2) (M = Ru, Os) in ethanol. All complexes have been characterized by elemental analysis, spectroscopic techniques ((1)H, (13)C NMR, IR, UV-vis), and ESI mass spectrometry, while four complexes were investigated by X-ray diffraction. The complexes have been tested for antiproliferative activity in vitro in A549 (non-small cell lung), SW480 (colon), and CH1 (ovarian) human cancer cell lines and showed IC(50) values between 1.3 and >80 μM. The effects of Ru vs Os and modifications of the lactam unit on intermolecular interactions, antiproliferative activity, and cell cycle are reported. One ruthenium complex and its osmium analogue have been studied for anticancer activity in vivo applied both intraperitoneally and orally against the murine colon carcinoma model CT-26. Interestingly, the osmium(II) complex displayed significant growth-inhibitory activity in contrast to its ruthenium counterpart, providing stimuli for further investigation of this class of compounds as potential antitumor drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the Piperazine Unit and Metal-Binding Site Position on the Solubility and Anti-Proliferative Activity of Ruthenium(II)- and Osmium(II)- Arene Complexes of Isomeric Indolo[3,2-c]quinoline—Piperazine Hybrids

In this study, the indoloquinoline backbone and piperazine were combined to prepare indoloquinoline-piperazine hybrids and their ruthenium- and osmium-arene complexes in an effort to generate novel antitumor agents with improved aqueous solubility. In addition, the position of the metal-binding unit was varied, and the effect of these structural alterations on the aqueous solubility and antipro...

متن کامل

Ruthenium− and Osmium−Arene Complexes of 2-Substituted Indolo[3,2-c]quinolines: Synthesis, Structure, Spectroscopic Properties, and Antiproliferative Activity

The synthesis of new modified indolo[3,2-c]quinoline ligands L(1)-L(8) with metal-binding sites is reported. By coordination to ruthenium- and osmium-arene moieties 16 complexes of the type [(η(6)-p-cymene)M(L)Cl]Cl (1a,b-8a,b), where M is Ru(II) or Os(II) and L is L(1)-L(8), have been prepared. All compounds were comprehensively characterized by elemental analysis, electrospray ionization mass...

متن کامل

The contrasting activity of iodido versus chlorido ruthenium and osmium arene azo- and imino-pyridine anticancer complexes: control of cell selectivity, cross-resistance, p53 dependence, and apoptosis pathway.

Organometallic half-sandwich complexes [M(p-cymene)(azo/imino-pyridine)X](+) where M = Ru(II) or Os(II) and X ═ Cl or I, exhibit potent antiproliferative activity toward a range of cancer cells. Not only are the iodido complexes more potent than the chlorido analogues, but they are not cross-resistant with the clinical platinum drugs cisplatin and oxaliplatin. They are also more selective for c...

متن کامل

Medicinal organometallic chemistry: designing metal arene complexes as anticancer agents.

The field of medicinal inorganic chemistry is rapidly advancing. In particular organometallic complexes have much potential as therapeutic and diagnostic agents. The carbon-bound and other ligands allow the thermodynamic and kinetic reactivity of the metal ion to be controlled and also provide a scaffold for functionalization. The establishment of structure-activity relationships and elucidatio...

متن کامل

Unusual DNA binding modes for metal anticancer complexes.

DNA is believed to be the primary target for many metal-based drugs. For example, platinum-based anticancer drugs can form specific lesions on DNA that induce apoptosis. New platinum drugs can be designed that have novel modes of interaction with DNA, such as the trinuclear platinum complex BBR3464. Also it is possible to design inert platinum(IV) pro-drugs which are non-toxic in the dark, but ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2013